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Note on the Relation between

the Parameters of the Mark-Houwink-

Kuhn-Sakurada Equation

Vĕra Halabalová, Lubomı́r šimek, and Jir̆ı́ Dostál
Faculty of Technology, Tomas Bata University,
Zlı́n, Czech Republic

Miloslav Bohdanecký
Institute of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Prague, Czech Republic

The relation between the parameters K and a of the equation ½Z� ¼ KMa,
which has been empirically established by several authors, is discussed.
Equations describing this relation are derived based on the two-parameter
theory of the intrinsic viscosity for flexible chain polymers (where a<0.8)
and on the worm-like cylinder model for stiff chains (a>0.8). The corre-
spondence of calculated and empirical results is good.

Keywords: Equation [Z]¼KMa; Parameters K and a; Interpretation

The dependence of the intrinsic viscosity [Z] on the molecular weight of
polymers is currently described by the Mark-Houwink-Kuhn-Sakurada
(MHKS) equation:

½Z� ¼ K:Ma ð1Þ

where the parameters K and a depend on the polymer-solvent system.
They are estimated from the intercept and the slope of straight line fitting
the bi-logarithmic plot of [Z] versus M:
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ln½Z� ¼ lnKþ a lnM ð1aÞ

In this approximation the quotient

a ¼ d ln½Z�=d lnM ð2Þ

is constant. Some authors[1–3] have established a simple relation between
these parameters for a given polymer in various solvents. Based on a large
body of experimental data for polymers referred to as flexible (with
0.5< a< 0.8), Rai and Rosen[4] have described this relation by the
empirical equations

logK ¼ maþ c ð3Þ

and

log K=K0ð Þ ¼ m a� 1=2ð Þ ð4Þ

where m, c, and K0 are the parameters specific to the polymer. The m
values for polymers examined by Rai and Rosen[4] oscillate around �3.94
(within 7%). Some time ago, Millich et al.[5] found than an equation
similar to Equation (3) with m¼�4.64 and c¼ 0.55 holds for stiffchain
polymers differing in chemical structure and chain conformation
(0.8< a< 1.8).

To interpret the relation between K and a for flexible chains, Boyer
and Simha[6] and, recently, Simha[7] have used theories of the intrinsic
viscosity that attribute the solvent dependence of the MHKS parameters
to the strength of the intramolecular hydrodynamic interaction. Kamide
and Kataoka[8] based their interpretation on a semi-empirical theory that
ascribes the variation to the expansion of chain dimensions by the
excluded-volume effect. No attempt has been made so far to explain
Equation (3) for stiff-chain polymers. As will be shown in this note
Equation (3) can be rationalized for both types of polymers on the basis
of recent theories of the intrinsic viscosity.

FLEXIBLE POLYMER CHAINS IN
NON-DRAINING REGIME

The starting point of the discussion is the well-known Fox-Flory
equation[9] for the intrinsic viscosity of random coils in the non-draining
regime:

½Z� ¼ K0M
1=2a3Z ð5Þ
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The K0 parameter is related to ratio hR2i0=Mð Þ1 of the mean-square end-
to-end distance hR2i0 and the molecular weight of random coils unper-
turbed by the excluded-volume effect by

K0 ¼ F0;1 hR2i0=M
� �3=2

1 ð6Þ

where F0;1 is the Flory viscosity constant in the non-draining regime,
and the viscosity expansion factor a3Z is a function of the excluded-volume
variable z defined by

k ¼ z=M1=2 ¼ 0:346F0;1ðB=K0Þ ð7Þ

A variety of functions a3Z zð Þ have been advanced, some of them being a
semi-empirical modification of theoretical results. Actually, the most
consistent approach to the problem of the excluded volume effect on the
intrinsic viscosity is due to Barrett[11]. Hence, the formula

a3Z ¼ 1þ C1zþ C2z
2

� �0:3 ð8Þ

(with C1¼ 3.8 and C2¼ 1.9) resulting from his treatment appears to be
suitable for the purpose of this article.

Differentiating Equation (5) with respect to the molecular weight and
Equation (8) with respect to z leads to

d ln½Z�=d lnM ¼ 1=2þ d ln a3Z=d lnM ð9Þ

d ln a3Z=d ln z ¼ 0:3 C1zþ 2C2z
2

� �
= 1þ C1zþ C2

2

� �
ð10Þ

Combining Equations (1a), (2), (9), (5), and (10) we have

a ¼ 1=2þ d ln a3Z=d lnM ð11Þ

and

lnðK=K0Þ ¼ ln a3Z � 0:15 C1zþ 2C2z
2

� �
1þ C1zþ C2z

2
� ��1

lnM ð12Þ

As follows from Equations (9) and (11) the quotient d ln a3Z=d lnM is a
function of the molecular weight, and the same applies for the ratio K=K0

(see Equation (12)) and the MHKS parameters K and a.
Equations (10)–(12) will be used to calculate the dependence of K=K0

versus a. Figure 1 presents plots of log ðK=K0Þ versus a computed for the
case that the polymer-solvent interaction parameter B is kept constant
and the z variable varies with the molecular weight according to Equation
(7). To construct these curves we set the k parameter (see Equation (7))
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equal to 10�4, 10�3, 10�2, 4� 10�1, and 10�1 as characteristic of the
polymer-solvent system, and calculated the exponent a with Equation
(11) and K=K0 using Equation (12), for molecular weights in the range
from 102 to 1012. The figure shows that the dependence of K=K0 versus a
is the weaker and the ratio K=K0 at a ! 0:8 is the higher the k parameter.
The theory predicts that the a and K values should depend on the
molecular weight. In practice, this dependence can hardly be detected due
mainly to limited ranges of molecular weights used in most experimental
studies.

FIGURE 1 Theoretical relation between the MHKS parameters; curves 1 to 5
calculated using Equations (10) to (12) for constant k values (10�4, 10�3, 10�2,
0.4, and 0.1) and varying molecular weights.
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The plots in Figure 2 are equivalent to the plots in Rai and Rosen[4] of
data for a given polymer in various solvents differing in the interaction
parameter. The curves were obtained from dependences similar to those
in Figure 1 by interpolation for molecular weights M¼ 104, 1.5� 105,
and 106. While the curves for the two highest molecular weights
considered are close to one another, the curve for M¼ 104 is distinctly
different. All curves can be approximated by straight lines for a< 0.67,
whereupon they flatten and pass through a minimum at 0.73 < amin <
0.76. The dependence of K versus a calculated with Equation (4) and the
mean value (m¼�3.94) reported by Rai and Rosen[4] is drawn by dashed
straight line. The correspondence with the results of this article is good.

The minima and sharp increase of the curves at a> amin are worth
discussion. The amin values are the higher and the minima are the deeper
the higher the molecular weight. Bi-logarithmic plot of a3Z versus M in
Figure 3 can help to explain this behavior. We first consider the section of
curves between M¼ 104 and 106, i.e., in the region of practical interest.
Dotted lines represent linear approximation to calculated curves in this

FIGURE 2 Theoretical relation between the MHKS parameters; curves 1 to 3
calculated for a fixed molecular weight (104, 1.6� 105, 106) and varying interac-
tion characteristic k. Details in text.
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range, and their intercepts (at logM ¼ 0) are equal to logðK=K0Þ. These
decrease with increasing k at k < 10�2 only. At k ¼ 0:1 the intercept is
higher than that for 10�2 and is almost equal to that for k ¼ 10�3. This is
consistent with the shape of the curves in Figure 2.

Let us consider the ascending branches of curves in Figure 2. In this
region the a values approach to a¼ 0.8 predicted by theory for very good
solvents and very high molecular weights. The k values are of the order of
10�1, and the molecular weights would be higher than the highest
molecular weight found with flexible chain polymers (M ffi 6� 107 for
polystyrene[10]). The k values correspond to extremely good solvent sys-
tems where, as can be seen in Figure 3, the chain expansion due to the
excluded-volume effect would be noticeable already at molecular weights
of the order of hundreds. No solvents of such power have been known so
far. Moreover, the chain stiffness, which is not taken into account in our
calculations, would probably be dominant in this range.

FIGURE 3 Molecular weight dependence of the viscosity expansion factor a3Z;
full curves 1 to 4 calculated using Equations (8) and (7) for k¼ 10�4, 10�3, 10�2,

10�1; short dashed lines schematically represent linear fits to curves at
104<M< 106; dashed dotted lines represent linear fits to asymptotic parts of
curves.
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By extrapolating the asymptotic parts of the curves in Figure 3 to log
M¼ 0, the values of log(K=K0) corresponding to this region are
estimated. They increase with increasing k values, i.e., with increasing
strength of the polymer-solvent interaction. In principle, values close to
zero could be obtained with k> 0.1.

Curves similar to those in Figure 2 have been reported by Kamide and
Kataoka[8] and by Colby[12]. The starting poinZt of the former authors
was similar to that used in this article, i.e., the two-parameter theory. The
latter author applied the scaling approach to the intrinsic viscosity.

In Figure 4 we have plotted data for polyolefins and polydienes[13–15],
poly(methyl methacrylate) (PMMA)[3,15,16], polystyrene (PS)[3], poly (vinyl

FIGURE 4 Relation of experimental values of the MHKS parameters for
polymers in different solvents; (a) polyolefins s and polydienes �[13–15], (b)

polystyrene[3] in single s and mixed � solvents, (c) poly(methyl methacrylate) s[3],

,[20], þ [17],(d) poly(vinyl chloride) �[17,18], n poly(e-caprolactame)[19]. Curves 1 to 3

calculated for M¼ 104, 1.6� 105, and 106.
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chloride) (PVC)[17,18] and poly (e-caprolactame) (PCL)[19], making use of
values of a, K, and K0 given in the respective articles or calculated from [Z]
and M listed therein. Theoretical curves in these figures correspond to a
fixed molecular weight (M¼ 104, 1.6� 105, and 106), i.e., to one point in
the bi-logarithmic plot of [Z] versus M. Contrary to this, experimental K
and a values correspond to a section of such plot, in other words, to a
certain interval of molecular weights. In order to make possible a com-
parison of calculated and experimental data, we characterize these inter-
vals by the geometric mean Mg of the highest and lowest molecular
weights used in the respective experimental studies, i.e., Mg� 104ffi 18 for
PMMA and PS, 10 for polyolefins and polydienes, 5 for PVC, and 6.3 for
PCL. It is seen that experimental plots in these figures are well explained
by the results of calculations carried out in this article if differences in
ranges of molecular weights are taken into account.

With respect to this finding, we did not adopt the more sophisticated
quasi-two-parameter theory although, as has been shown in recent
studies by Yamakawa’s school (see Fujii et al.[20]), it significantly
improves the correspondence of experimental and theoretical values of
a3Z, particularly at lower molecular weights. This scheme takes into
account the impact of chain stiffness on the onset of the excluded-volume
effect.

When constructing Figure 4 we did not use the MHKS parameters esti-
mated from the correlation of the intrinsic viscosity with the number average
molecularweight because of its high sensitivity on polymolecularity.Wehave
also excluded data for polymers whose chains may be branched (e.g., poly-
ethylene, polyacrylates, poly(vinyl acetate), etc.) or for aggregating systems.
In the former case the degree of branching usually increases with increasing
molecular weight, in the latter, incomplete removal of super molecular par-
ticles before light scattering increases themolecularweights. In both cases, the
bi-logarithmic plots of [Z] versusM are deformed, yielding lower a and higher
K values.

STIFF-CHAIN POLYMERS

As the MHKS exponent for stiff-chain polymers is typically higher
than 0.8, the interdependence of the K and a values cannot be interpreted
in the manner outlined in the first part. In this part we are concerned with
this problem for stiff chains under a simplifying, although realistic,
condition that the excluded-volume effect on the chain dimensions and
intrinsic viscosity can be neglected.

The starting point is the result of the Yamakawa-Fujii theory[21]

½Z�0 ¼ K0M
1=2F1ðLr; drÞ ð13Þ
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where K0 is given by Equation (6), and dr is the reduced cross-sectional
diameter of the worm-like cylinder model expressed in multiples of the
Kuhn statistical segment length lk. This is given by

lk ¼ hR2i0=M
� �

1ML ð14Þ

whereML is the ‘‘shift’’ factor, which is usually set equal to the molecular
weight per unit contour length. It follows from the theory that the
quotient v ¼ d ln½Z�=d ln M and, consequently, the exponent a in the
MHKS equation, is a function of the molecular weight:

a ¼ 1=2þ n ð15Þ

By combining Equations (1), (13), and (15) we obtain

logðK=K0Þ ¼ logF1 � n logM ð16Þ

or, in a form more convenient for calculations,

logðK=K0Þ ¼ logF� n logLr � n ln MK ð17Þ

where MK is the molecular weight of the Kuhn segment (MK ¼ M=Lr).
The function F1

[21] can be well approximated[22,23] by

F1 ¼ ðB0 þ A0=LrÞ
�3 ð18Þ

where A0 and B0 are functions of d
½23�
r . It should be remembered that

Equation (18) works well at Lr values higher than L�
r values (of order of

unity)[23]. Using the A0 and B0 values for see Bohdanecký dr ¼ 0.001, 0.01,
0.1, 0.2, and 0.4 we have first computed F1 and v for Lr > L�r and then the
values of K=K0 for three segment molecular weights MK

(104; 105; and 106). The results are presented in Figure 5.
As follows from theory[23], calculated curves are limited to a � 0:9.

The plots show that the K values for very thin chains (dr ffi 0:001) can be
lower than K0 by as much as eight orders of magnitude. The effect of
chain thickness is weak for dr < 0:01 but very strong for higher dr values.
At dr ffi 0:4 the ratio K=K0 is about unity, irrespective of the chain length.
The effect of the segment molecular weight is remarkable: the higher the
molecular weight ML, the higher is the negative slope of the plot.

The straight dotted line in Figure 5 is a schematic representation
of Equation (4) with Millich’s value m ¼ �4:64½5�. It is nearly parallel
to theoretical curves for 0:01 < dr < 0:1 and 104 < MK < 105. The values
of these characteristics are not available for all polymers mentioned
in Millich et al.[5], nevertheless, it is encouraging that the values
(0:02 < dr < 0:034; 4:5 < MK � 104 < 44)[23] for one of them (cellulose
trinitrate) are in this range. The same applies for two polypeptides (poly
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(e-carbobenzoxy-L-lysine) and poly (g-ethyl-L-glutamate)[23] which are
similar in structure to polypeptides studied by Millich et al.[5]

(dr ffi 0:015; MK ffi 105).
We can conclude that the empirical relation between the MHKS

parameters for stiff chains as presented in Millich et al.[5], can theoreti-
cally be explained. Nevertheless, it should be borne in mind that the
dependence would be milder with ‘‘thicker’’ polymer chains (dr > 0:1).
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